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ABSTRACT 

A generalization of the Hirschman inversion formula and a new jump formula 
for the Laplace transform are proved. 

In this part of  our paper we shall make use of  theorems and methods of  the first 
part  and a generalization of  formula (25) p. 132 in [1],  to get a new jump formula 
and a generalization of  the known Hirschman inversion formula for the Laplace 
t ransform 

§5. Real inversion formula of Hirschman type. We begin by defining for 
y > 0 and the real sequences {g(k)} and {ak} (k >= 1), the operator  W[k, y, g(k)a k ; f ]  
operating on the func t ion f (x )  by 

(1.5) W[k, y, g(k), ak ; f ]  =(y(g(k) + ak)) g(k)" 1/2 
r (g(k))  

fo ° Ul/2~(k)Jgtk ~(2uy(g(k) + ak)t/2)f(u)du 

where J,(z) is the Bessel function of  the first kind, of  order v and F(z) is the F- 
function. 

A function $(t) belongs to class G if $ ( t ) e L t ( 0 , R ) ,  R > 0 and, for  
O(t) = StoC~(u)du, we have O(t)= O(t') (t 4; oo) for some finite r and 
O(t) = O(t") (t t 0) for each m > 0. 

We say that  {g(k)} e D if  {g(k)} is a real sequence satisfying g(k) ~ k(k ~ oo:). 
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THEOREM 1.5. Suppose that f ( x )  is the Laplace transform of c~(t), (9(t)eG 
and let {g(k)} ~ D. Then,for any fixed y > O, we have: 

(i) I f  {ak} ~ A(2) and both c~(y +_ O) exist, then 
l i m k ~  W[k,y ,g(k) ,ak; f ]  = (1 - N(2) c,b (y - 0) + N(2) q~(y + 0) 

(ii) If{ak} ~ B + and dp(y +) exists, then 
limk-* ~o W[k, y, g(k), a k ; f ]  = ~b(y + ). 

(iii) I f  {ak} ~ B -  and c~(y - ) exists, then 
limk.. ~ W[k,y ,g(k)ak; f]  = dp(y - ). 

(iv) If{ak} e B and y is a point of continuity of alp(t), then 
limk-, oo W [k, y, g(k)a k ; f ]  = dp( y). 

(v) I f  {ak} ~ A*, both dp(y + O) exist and are equal, then 
limk_, ~ W[k,  y, g(k), a k ; f ]  = t~(y + 0) ( = tk(y - 0)). 

Theorem 1.5 with g(k) = k and ak = 0 is Hirschman's  inversion formula([2]) .  
A funct ion  ~(t) belongs to class H if  for some finite r > 0 ~(t) = 0(t ' ) ( t  ~' ~ ) 

and for  each m > 0 ~(t) = o(tm)(t~ 0). 

THEOREM 2.5. Let f (x) be the La place-Stieltjes transform of  a function ~( t) ~ H 
and let {g(k)} ~ D. Then for  any y > O, in the following four  cases 

(2.5) 

and 
(3.5) 

fO ~ 
lim W [k, u, g(k), ak ; f ]  du 

k~oo 

, lim W [k, y, g(k), a k ,fl] (wherefx(x) = f ( x ) / x )  
k"* o3 

exist and are both equal (respectively) to 

(4.5) 

( 1 - N ( 2 ) ) ~ ( y - ) + N ( 2 ) ~ ( y + )  if  {ak}eA(2)  
a(y +) if {ak} e B + 
~(y -- ) i f  {ak} ~ B -  
or(y) if c t ( y - - ) = ~ ( y  + ) and {ak}eB.  

In the special case g(k) = k and a k = 0, Theorem 2.5 is Theorem 4a of  [2]. 
By the heuristic method of  §2 we get some new jump formulae.  We state here and 
prove in §7 the final results, wi thout  the heuristic calculation. 

TrmOREM 3.5. Let {g(k)} ~ D and {ak} ~ A(2) for  some real 4. Suppose f ( x )  is 
the Laplace transform of d?(t) ~ G. I f  for  some y > 0 both (a(y +. O) exist, then 

l i m e  a'/" x/]rrk f o x  ~l~tk)-X(2{xy(g(k)+ (g(k) 1)/2 (g(k)+ l)/2 
~oo F(g(k)) (y(g(k) + ak)) - • ak)}l/2). 

• f ( x ) d x  = dp(y + O) - d?(y - 0). 
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THEOREM 4,5. Let {g(k)} ~ D and {ak} E A(2). Suppose that f (x) is the Laplace 
Stieltjes transform of or(t) ~ H. Then for any fixed y > 0 

(a) lira e ~2/2 2xf~-k(g(k) + ak)tg(k)-1)/2 
k-* ~ F(g(k)) 

• f~ du f :  (xu)Ce(')+t'/zdetk)_l(2{xu(g(k) + aD}l:~). 

• f ( x ) d x  = . ( y  +)  - . ( y  - ) .  

(b) l i m e  '~2/2 ~(Y(g(k)+ak)) tg(k) - l ) /2Y  ~0 Xfg(k)-X)/2f(x)" 
k-~ ~ F(g(k)) 

• Jgtk)-l(2(xy(g(k) + ak))l/2) dx = Ct(y + ) -- ct(y -- ). 

Theorems 3.5 and 4.5 for g(k) = k and a k = 0 (k ~ 1) yield simpler results. For 
instance, from Theorem 3.5 we get 

Corollary 1.5 Under the assumption of theorem 3.5 we have 

x/-~ y (k+1)/2kk/Z f[x(k+ l)/2dk_l(2(xyk)l/2)f(x)dx lim (k - 1) ! 
k'-* oo 

= ~ ( y  + 0 )  - ~ ( y  - o ) .  

§6. A general formula for the Laplace transform. In this section we prove a 
generalization of formula (2.5) on page 132 of [1]. This result will be used in 
proving the theorems of §5. 

LEMMA 1.6.Let f (x )  be the Laplace transform of ~(u). Define O(t) = ~ dp(u)du 
t > O. Suppose that, for the real number v and the two integers p, j satisfying 

(1.6) 

we have 

(2.6) O(t) 

and 

(3.6) 0(0 = 0(t ' ) ( t  ~ 0) 

Then, for s > O, 

(4.6) 

p---j(mod2), p + j - >  0, v + > - 2, 

= O(t')(t ~ c~) for s o m e r ~ O r < v + l + ~ -  

v + p  3 
for some m > ~ + --~. 

S ~ f :  u C~+')/2 d,_j(2x/'~)f(u)du 

p - j  

2 
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The special case p = j  = 0 of  Lemma 1.6 is formula (2.5) on page 132 o f [ l ] .  

Proof. We have for u > 0, 

fo Y: f (u )  = e-"t¢(t)dt = u e-UtO(t)dt 

where fx(u) = u f~e-" t  I O(t) ldt exists for u > 0. Now (see Widder [3] p. 181 
Theorem 1.)f l (u)  = O(u-')(u ~, 0) for the r of  (2.6), f l (u)  = O(u-m)(u ~ oo) for 
the m of  (3.6), and as is well known, 

J,(u) = O(u')(u J,o), 2,(u) = O(u-1/2)(u ~ ~)  

for real c~. Therefore 

(5.6) s 0-')/2 u('+')/2lJ,_s(2~/u-s)/u e-"' IO(t) ldtdu 
0 

converges for s > O; now 

(6.6) I = s (j-')/2 f:u('+P)/2J,_j(2~/u-s)f(u)du 

= s(~-')/2 foU~'+')/~S,_~(2~/~)U fo°~e-"O(t)dt du 

(by (5.6) and Fubini 's  theorem) 

= s t~-v)/2 O(t) u(~÷P)/2+lJ,_j(2~/-~s)e-"du dt. 
, f 0  

We have 

(7.6)  J -- s u- '>/~  u(('÷P)/2)+lJ,_j(2~/~)e-"'du 

= e-"t k = o ( -  1)k k ! o F ( k + v - j + l )  du. 

Changing formally the order of  summation and integration we get 

Sk . fo ~° (8.6) J = k=O ~ ( -- 1)k k !F(k  + v - j  + 1) e-"fuk+V+((P-'O/2)+ldu 

IT) 
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Now Fubini's theorem and the fact that 

k=o klF(k + v - j  + 1 

is an integral function justify the formal change of summation and integration. 
Cx~mbining (6.6) and (8.6) we get 

I ( 1) {p+J/2)+t foOO / ,j\((p+j)/2)+t , = - O(t)(-~t ) {t - '+~+t e-S/'}dt 

fO ¢~ / d \(p+j/2) = ( -  1) (p+j)/2 c~(t) [~tt) {t-~+J-le-~/t}dt(byintegration byparts) 

d\(p+/)/2 | ~ - s u  v - j +  du = / o  ~ ( 1 ) (  u2 du] te u l } ~ - ~ ( w h e r e u = + . )  

Q.E.D. 

§7. Proofs of the Theorems of §5. 

Proof of Theorem 1.5. Under the suppositions of our Theorem, the sub- 
stitutions(in Lemma 1.6) ofp = j  = 0, s = y(g(k) + ak) and v = g(k) imply 

(1.7) I s = W[k,y,g(k), ak;)q(X) ] = {y(g(k) + as)} e{s) f 
OD 

r(g(k)) " Jo qb(t)t-e(k)-t. 

" e-(g'~)+~)'/~t= F(g(k))g(k)g'k------~) {fo 1- '  + f t [ :  k)/e's)+°~ 

° 

= I~,t + Ik,2 + I~,3 + Ik,, for some 6, 0 < 6 < 1. 

fo 
t 

Qt(t) = tb(zy(1 + akg(k)- J ))dz 

Define 

(2.7) for t > O. 
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Now for any sequence {ak} satisfyiyng ak = 0(k) (k~ ~ )  we have~u(t) = 0(t'), 
(t t ~ )  for some finite r. Hence 

g(~k) ef(k) [ra -f(k)lz,,,-f(k)- 1.(.,,tl Qo 

f: ) } + e_gtk)/~Z_~C~)_X[ g(k)+ g ( k ) + l  ct(z)dz --,0 as (k t oo3 
z 

since 0 < e • e - '  • z- 1 < 1 for z > 1 + 6. Similarly 

lira I t , t  = 0 
k~QO 

The calculations in the proof up to now depend only on ak = O(k) (k ~ oo). This 
condition is satisfied in all cases (i)--(v). Now we prove the case (i) of  our theorem. 
We estimate Ik,3 by means of  Theorem 2.3. Substitute there a = I, b = 1 + 6, 
h(z) = - (I /z)  - log(z), our - 2 for the 2 there and for the {at} there, substitute 
{(akg(k)/g(k) + aD} (k _~ 1) where {at} is the sequence given in our theorem. It is 
easy to see that the last sequence belongs to A( - 2). Also choose 

~k(u) = u -  l~(uy(1 + ak" g(k)-I)). 

Theorem 2.3 yields for these substitutions 

lira It,3 = ~(y + 0)(1 - N( - 2)) = N(2)c~(y + 0). 
k-.¢ ao 

Similarly we get by using Corollary 2.3 instead of Theorem 2.3. 

lira Ik,2 = ~b(y - 0 )N(  - ;t) = (I - N(2))~(y - 0). 
k"* co 

Combining the estimations for lk:(i = 1,2, 3, 4) we obtain the proof of  case (i). 
The proofs of  conclusions (ii)-(v) are similar to the proofs of  (ii)-(v) in 

Theorem 1.2. 

Proof of Theorem 3.5. Choose, in Lemma 1.6, p = j  = 1, v = g(k) and 
s = y(g(k) + a~). Then q~(t) which satisfies the asumptions of  Theorem 3.5, satis- 
fies for k ~ ko the asumptions of  Lemaa 1.6 for the above choice of  the parameters. 
Hence, by Lemrna 1.6, 
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x/2gky at) } trtt)- 1)/2 
e~'/' F(g(k) {y(g(k) + 

fo ®Xtrtk)* 1)" l/2jg(~)_ t(2{xy(g(k) + at)} 1/2)f(x)dx 
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= - e a~/~ v / 2 - ~ Y  fo oo F(g(k) {y(g(k) + at)} e(k)- t  . dp(Oe-m(k)+ok)/,e-g(k)-2. 

• {(g(k) + at)y - tg(k)}dt = 

( tg(k) ) 
and by the substitution z = g(k) 4. at 

= -  ea2/" F(g(k))X/2nkg(k)g(t) g(k)g(k)+ at { fo  t-6 + ,,/1 f g(k)/tg(t)+ak)_O + 

r ''' f ; /  + + dp(zy(g(k) + at) g(k)- t)e-:(t)/'zS(t)- 2 (1 - z)dz 
J I ( tXg( / )  + a) + 6 

= lt . t  + lk.2 + / t . 3  4- I t , ,  where 0 < 6 < 1. 

We estimate lh, 3 by means of Theorem 4.3. Substitute there a = 1, b = 1 + 6, 
h ( z ) = -  z -1 - l o g z ,  our - 2  for the 2 there, and for {at} there, substitute 
{ - (atg(k)/g(k) + at) } (k _~ 1) where {at} is the sequence given in our theorem. 
It is easy to see that the last sequence belongs to A ( -  2). Also choose 
Or(u) = u -2O(uy (1 + ak/g(t))). Theorem 4.3. yields for these substitutions 

(3.7) lim I~. s = ~(y  + O) 
k-coo 

The above substitution and the argument of the proof of Theorem 1.5 yield 

lim It.2 = - ~b(y - O) and lim It.1 = lim I t , 2  ---- 0 
k"~ oo k.~oo k-~oo 

Proof of Theorems 2.5 and 4.5. The arguments used in proving Theorems 1.5 
and 3.5 and some simple modifications prove our theorems. Q.E.D. 

§8. R B ~ K s .  
The arguments used in proving Theorems 1.5 and 3.5 yield the following 

result too. 

THm~M 1.8. Let a be real and let {g(k)} ¢ D. Suppose thatf(x) is the Laplace 
transform of O(t), ~oe-°'O(u)du = O(t ~) (t t or)for some finite r; then for any 
fixed y > 0 and any tl > 0 
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(i) i im e(~+"W[k,y + ~,g(k),at;f2 ] = = ( 1 - N ( 2 ) ) O ( y  - 0) + N ( 2 ) O ( y  + 0) 

f° (ii) lim (ea' / '~/2nk(y + ti) e "t'+~) {(y + tl)(g(k) + a,)}('th)-s)/2/F(k))" x,tt~+ 1/2 
k,.t~ J0 

I,,~>. ~(2{x(y + ,S)(~(k) + a~)} ~/~ )f2 (x)dx = ~(y + O) - ~(y  - 0). 

wheref~(x) = e"(x+°>f(x + a). 
Results analogous to (ii)-(v) of Theorem 1.5 can also be stated in the present 

set up. 

In the same way that Theorem 1.8 follows from Theorems 1.5 and 3.5 it is 
possible to obtain analogous results from Theorems 2.5 and 4.5 by replacing the 
assumption ~(t) ¢ H by ~(t) = O(t'z °') (t t oo) (for some real a and r). 
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